Direct inhibition of human RANK+ osteoclast precursors identifies a homeostatic function of IL-1beta.

نویسندگان

  • Bitnara Lee
  • Tae-Hwan Kim
  • Jae-Bum Jun
  • Dae-Hyun Yoo
  • Jin-Hyun Woo
  • Sung Jae Choi
  • Young Ho Lee
  • Gwan Gyu Song
  • Jeongwon Sohn
  • Kyung-Hyun Park-Min
  • Lionel B Ivashkiv
  • Jong Dae Ji
چکیده

IL-1β is a key mediator of bone resorption in inflammatory settings, such as rheumatoid arthritis (RA). IL-1β promotes osteoclastogenesis by inducing RANKL expression on stromal cells and synergizing with RANKL to promote later stages of osteoclast differentiation. Because IL-1Rs share a cytosolic Toll-IL-1R domain and common intracellular signaling molecules with TLRs that can directly inhibit early steps of human osteoclast differentiation, we tested whether IL-1β also has suppressive properties on osteoclastogenesis in primary human peripheral blood monocytes and RA synovial macrophages. Early addition of IL-1β, prior to or together with RANKL, strongly inhibited human osteoclastogenesis as assessed by generation of TRAP(+) multinucleated cells. IL-1β acted directly on human osteoclast precursors (OCPs) to strongly suppress expression of RANK, of the costimulatory triggering receptor expressed on myeloid cells 2 receptor, and of the B cell linker adaptor important for transmitting RANK-induced signals. Thus, IL-1β rendered early-stage human OCPs refractory to RANK stimulation. Similar inhibitory effects of IL-1β were observed using RA synovial macrophages. One mechanism of RANK inhibition was IL-1β-induced proteolytic shedding of the M-CSF receptor c-Fms that is required for RANK expression. These results identify a homeostatic function of IL-1β in suppressing early OCPs that contrasts with its well-established role in promoting later stages of osteoclast differentiation. Thus, the rate of IL-1-driven bone destruction in inflammatory diseases, such as RA, can be restrained by its direct inhibitory effects on early OCPs to limit the extent of inflammatory osteolysis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inhibition of RANK expression and osteoclastogenesis by TLRs and IFN-gamma in human osteoclast precursors.

TLRs have been implicated in promoting osteoclast-mediated bone resorption associated with inflammatory conditions. TLRs also activate homeostatic mechanisms that suppress osteoclastogenesis and can limit the extent of pathologic bone erosion associated with infection and inflammation. We investigated mechanisms by which TLRs suppress osteoclastogenesis. In human cell culture models, TLR ligand...

متن کامل

IL-4 suppresses osteoclast development and mature osteoclast function by a STAT6-dependent mechanism: irreversible inhibition of the differentiation program activated by RANKL.

Numerous reports have described the effects of interleukin-4 (IL-4) on bone biology. Previous studies, performed using complex coculture systems, demonstrated the effects of IL-4 on osteoblasts and osteoclasts. To directly test the effect of IL-4 on osteoclasts, we took advantage of a simplified system using recombinant receptor activator of nuclear factor kappaB ligand (RANKL) as the osteoclas...

متن کامل

Cytokines synergistically induce osteoclast differentiation: support by immortalized or normal calvarial cells.

Conditionally immortalized murine calvarial (CIMC) cells that support differentiation of precursors into mature osteoclasts were isolated. All six CIMC cell lines supported osteoclast differentiation in response to 1,25-dihydroxyvitamin D(3) or interleukin (IL)-11. CIMC-4 cells also supported osteoclast differentiation in response to tumor necrosis factor (TNF)-alpha, IL-1beta, or IL-6. The res...

متن کامل

Interaction of Fas ligand and Fas expressed on osteoclast precursors increases osteoclastogenesis.

We incidentally found that osteoclast precursors and mature osteoclasts express Fas ligand (FasL) as well as Fas, which was confirmed by flow cytometry, immunofluorescent staining, and RT-PCR. The aim of this study was to determine the role of FasL in differentiation and cell death of osteoclasts. To study the role of FasL in osteoclastogenesis, neutralizing anti-FasL mAb or rFasL was added dur...

متن کامل

Dectin-1 signaling inhibits osteoclastogenesis via IL-33-induced inhibition of NFATc1

Abnormal osteoclast activation contributes to osteolytic bone diseases (OBDs). It was reported that curdlan, an agonist of dectin-1, inhibits osteoclastogenesis. However, the underlying mechanisms are not fully elucidated. In this study, we found that curdlan potently inhibited RANKL-induced osteoclast differentiation and the resultant bone resorption. Curdlan inhibited the expression of nuclea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of immunology

دوره 185 10  شماره 

صفحات  -

تاریخ انتشار 2010